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A generalization of the Korn inequality which permits reduction of the proof
of solvability of the problem of total shell energy minimization in some class
of admissible displacements to the verification of some algebraic condition
which the strains must satisfy, and to the proof of existence theorems for the
solution (or to the verification of the equilibrium conditions), Existence theo-
rems are proved by the scheme mentioned in the Novoghilov-Bolabukh shell
theory [1] and in the Reissner theory [2, 3],

1, Let Q be the domain of the variables x = (zy, ..., 7n}, and u = {4y, .-y Um)
a vector function, let us say that u & Wt (Q) if u; € Wl (), i =L, ..., m.
Let the linear first order differential operators with variable coefficients

8; (u) = aijkuj,k' i=1,...,. N (f.i == of /81‘1)
Si (u) :gio (u) +bi3uj’ i=1,..., N

be given, We pose the question: Under what conditions on the operators &;(u) for any vec-
tor function u & WaXQ) is the inequality generalizing the Korn inequality [4, 5] (see
[5] in the References) N »

el < o (e, ) o+ 10 i) (1)

)

valid,

Theorem 1, Let Q be such that its closure Q° is mapped holomorphically on
some cube or sphere by using the mapping 7 (x) of the class (3 (2% such that the Jaco-
bian 1 7’| has the positive constant c; as lower bound, Let o'k & C?(Q9), bi! € € (Q9).
Forming all possible first derivatives of the operators ¢;° (u) and extracting terms con-
taining the second derivatives of the functions uj, we obtain the differential expressions

=a %y
1

£p = f,i;=0% | 0%, 0x;

Jykp?
It is sufficient for the validity of (1, 1) that the following algebraic condition be satis-
fied: find functions My & C1{Q% such that the identities

_ at — a4ip 7k
Uy =M lIl’se'iP (u)= M}fal % kp 1.2)

hold, In other words, any second derivative of the functions u; can be expressed in terms
of a linear combination of differential expressions &;, (u). The constant ¢, in (1,1) de-
pends on the norm of the functions a;’#, My, by? | respectively, in (2 (Q°), C* (Q9),
C (), the norms of the mapping 7 in 3 (Q°), the constant ¢, and the dimensions of
Q (¢, increases as the dimensions decrease),

The assertion evidently follows form Theorem 1,

Theorem 2, Letthe domain Q be such that its closure is
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Q= Q¢ ... U uNQ/=4A if£]

and the conditions of Theorem 1 are satisfied for each domain Q;, Then the inequality
(1, 1) holds, where the constant ¢; in (1,1) is the maximum of the constants for the do-
mains Q;.

Proof of Theorem 1, We introduce the notation: D () is the space of the
fundamental functions, D’ (Q) is distribution space, W.'%(Q) is the space of functions
belonging to Wy! (Q) and equal to zero on the boundary @, W1 (Q) is the space dual
to Wab0(Q) , WH(R) C D' (Q). If f& D (Q),9 & D (Q), the value of f in the func-
tion ¢ will be denoted by (f, 9)a-

We introduce the Hilbert space Y (Q) consisting of the distributions f< W™ {Q) such
that / ;& W1 (Q),i=1,..., n and we assume

f“y(n) (l“ nw—t(n)"l‘ 2 I 7 t“W—! (Q)) (1, 3)

Lemma 1, L, (Q) isimbedded continuously in W1 (Q) and in Y’ (Q), where
I i“W-l(p) “f“Lz(Q), i=1...,7

Ml <Ml @p o Selfln o e=rt+t
Lemma 2 (fundamental), The space Y (@) is imbedded continuously in L, (). 1. e,
if the distribution f &Y (Q), then f e L, (Q) and

1 gy < el Iy ooy (1,4)
Proof, Let 7 be the mapping transferring © into a cube (or sphere) G. We con~-
struct the mapping P of Y (Q)into Y (G)
(Pr g = 9T)g

(@7 is the superposition of ¢ and 7).It can be verified that P is a linear homeomor-
phism between Y (Q) and Y (G), where

1 Pily <calilyqy 1P %lv@salslye (1.5)

Here ¢y depends on the norm of 7 in (2 (Q°) and the constant cg. It can be verified
that » is also a linear homeomorphism between L, (Q) and L, (G), and if [ & L, (€),
g & L, (G), then _
) © Pl <ol 1P %¢lLeSolglng (1.8)
Here ¢; depends on the norm of 7 in (! (Q°) and the constant cp.

Lemma 2 has been proved in [4] for an arbitrary domain with smooth boundary (and
therefore for a sphere G also), A slight addition permits the proof of Lemma 2 for the
cube G, i,e, if gE Y (G), then g L, (6) and | ¢ 0, < @5 ] 8y 2nd {1,4) with
the constant ¢, = cac,es follows from (1, 5), (1. 6).

By condition (1, 2)

gy Mlg"hew (u) = Um [e;p {u) — ezii‘puj’ il (1.7
From Lemmas 1 and 2, (1 3), (1, 7) there follows that {/ = u ]{iz(ﬂ))
luly, @) <7+ s 2““1 My =1+ Zﬂuz‘lﬂ%v—l o T (1. 8)

1. t

P APy 1R
i 2‘ fug e Byes @y 4 ey T - es? 2 I Myl i p“W-‘{m'f‘c" 12 I Myal pty, & -
It it s ,hs
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The inequality (1, 1) results from (1, 8) and the following assertion: let [ & Ly (2),
g E C(Q), then gf ; & W™Y(Q),and

i 8f,§‘w-1 ) <le uclmc)ﬁ f “Lz(ﬂ)

2. Let the shell middle surface S be given by the equation r = r (x) which homeo-
morphically maps S onto the domain Q of the variables x==(z;,2,) satisfying the con-
dition of Theorem 2, the Lamé coefficients by A;, 4, € C?(Q%, Ay, A, > m >0,

m = const, the curvatures by Ri~%, R:™ & €1 (Q°).

Let us investigate the solvability of the Novozhilov-Bolabukh shell equations [1], Let

us introduce the space of displacement fields and the known functions

Hi{(Q) ={U|U=(u, w), u= (1, ua), u & Wal (Q), w & W4 (Q)}
U lg,y=(u ||‘2,v,1(Q) +w ”%vzz(n))l‘/2

B, = — Arlw, + Rilyy, O, = — Ao, + Rl

0 = Ay, — A (A AN YUy, 0y = Ay, — Ay (A (262)
Ty = Ay — Arg (Ayd) T By, T, = A8, Ay (4,407 8 (2.9)

(2.1)

Let & denote the set of strains

61 = Ailuy (A A A gy + R, gy = AxTluy, b (A ) My i o (24)
Ry lw

®y = A9, + (AzAz)-lAl,gﬂz* %, = 42710, , + (AlAz)‘lAz,lﬁx 2.5)

= o + 0, T=2"1 (1 + 13 + B1ile, + Rz loy)

/s

e = (e, £2, ©, %1, %3, 7). | 8], ) = [g (e1® - &3 1 02 + %e? + %22 + 7% dx]
o]

Theorem 3, Forany field U & H, (Q) the inequality

HU g, ey €2 (le h{, ot fu “?_,, ot fjw "%V,‘J (Q))’/' (2.6)
holds,

Proof, Forming all possible first derivatives of the strains e;, &,, ® and extracting
terms containing the second derivatives of the functions u,, u,. we obtain differential
expressions satisfying condition (1,2)

11 = Arluy gy, Brp = Av Ny g, By = Ar Ty o, By = AgTN

22
s -1 -1 — - —3
O I ATy gy T AeThy gy O = Av TNy g, + ATy

In fact, Uy = Ay U= Awera, Uy g0 = Ay@y — A17M5%,, , the derivatives of
u, are expressed analogously, hence, the inequality

fu szx ) < Cs[S e -2 Fwtdx +Ju ﬂi, ) 4w 5&, (Q)],;’ 2.7
Q

follows from Theorem 2,

Since the strains », %,, T contain the senior terms — Agtw gy, AR 59,
— (4 4y) w4, respectively, we obtain (2,6) from (2, 7).

Let us introduce the total energy functional ®, (U) = E, (U) — L, (U), where £, (U)
is the strain energy [11. and L; (U) is the work of the external forces (a linear functional
continuous in A, (2)),

Let H;° () denote the subspace of 11 (Q) consisting of fields U such that e=0, Itis
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known [6] that H:°(Q) consists of displacement fields of the shell as a rigid whole,
Theorem 4, In order for the problem of minimizing the functional @, (U) tohave
a solution in the space of admissible displacement fields H:* (Q) C Ho (.Q) it is neces-

fiad. fa 14 n o
sary a and sufficient that the ethbuum conditions be satisfied: for any field U e A%

(D=H:"(QN Hy* (Q). Ly (U) = 0; the solution is determined to the accuracy of an
arbitrary field from R;° (Q). In particular, if R,° (Q) = 0 (i. e, , the boundary conditions
prevent the displacement of the shell as a rigid whole), the equilibrium condition is
satisfied trivially, and the solution exists and is unique,

Proof , We form the factor-space H (Q) = H:1* (Q)/ R,° (Q) and we define the
norm in H (Q) as follows

10l () = [E1 (U))"

Considering the opposite, and using (2. 6), as well as the inequality £, (U)> ool €|} (q)
it can be shown that the functional £,(U) is continuous in X (Q) from which the asser=-
tion of the theorem follows [7],

8, Let us investigate the solvability of the Reissner shell equations [2, 3], We intro~
duce the space of displacement fields
Hy (Q) = VIV = (ug, 1y, w, B, Oy), VE W2! (<
The notation of (2,2), (2, 3) is retained, and (2, 4), (2, 5) specify the strains &, &, ¥,

Hy
11° =11 + Ri e, 12° = T2 - Ra7lan

‘h? w1+ © ’
i = 2EO 4 T (et ey [ — - (e — e |
71° 4~ T2° 1
Hig = ‘grt — 5 (™ 4 Ry (01 -+ wo)
11 = Aflw' 1 Ri luy + Oy, Yo = As7lw P Ry lug - G2

ep = (&1, &2, 12, %1, X2, X1z, T1, T2)

- Y,
leglL, @)= lg (81® + 8% + e12? - %1% |- n® - w10® | 112 - 19F) dx] ’
Q

Here # is the shell thickness, It can be proved that if

max {hR17Y, hR} <KL — v (3.1)
(v is the Poisson's ratio), then the strain energy of a Reissner shell is a positive definite
quadratic form of the strain eg.

Theorem 5, Forany field V & H, (Q) the inequality

2 1
. . v ”W,i (Q)< cwo (&g "%,(n) +1v "L, (Q)) fa (3.2)
is valid,

Proof. Let us differentiate the strains ¢,, €,, %y, %3, V1, V2 and extract the terms
containing the second derivatives of the functions u;, u,, 9;, ¥,, w. All the second
derivatives of the functions u,, u,, 9y, 9,, w except Uy 991 U g10 0} g9s By 4, Can be ex-
pressed in terms of the differential expressions obtained in this manner,

Differentiating ¢, and %,, with respect to z, and transposing terms containing u, ,,

and ¢ ,, tothe left, we obtain the system

2
JL-%- (Rt — Ry Ry idg™ - —— 7 l:i 75 48 (=1 1)2]} gy = (3.3)
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ey (Red — Ry Ag™0y 5y =b1, Yy (R — Ra™Y) Ag™luy g0 -+ 1ada ™8y, = ba

to determine them, The right sides &, b, in (3, 3) are composed of the derivatives al-
ready found, The system (3, 3) is solvable under the condition (3, 1), conditions (1, 2) are
satisfied, and (3, 2) follows from Theorem 2,

Let H=® (Q) denote the subspace of H, (Q) which consists of fields v such that g5 =
0. Then the functions 9,, 9, are expressed in terms of u;, u,, w by means of (2,1),
hence Hq° (Q) has the form

He® (Q) = {V |V = (uy, uy, w, ¥y, &), (4, uy, w) € H°(Q), bi=—4iw,; +
Rilu, i=1,2)
An existence theorm holds for the solution which is completely analogous to Theorem 4,
Other shell equations, [8] say, can also be investigated by the same scheme,
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